
LLNL-JRNL-617393

Refraction-Enhanced Backlit Imaging of
Axially-Symmetric Inertial Confinement
Fusion Plasmas

J. A. Koch, O. L. Landen, L. J. Suter, L. P. Masse, D. S.
Clark, J. S. Ross, A. J. Mackinnon, N. B. Meezan, C. A.
Thomas, Y. Ping

February 11, 2013

Applied Optics



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



 

   1 

Refraction-Enhanced Backlit Imaging of  

Axially-Symmetric Inertial Confinement  

Fusion Plasmas 

 

J. A. Koch1,*, O. L. Landen1, L. J. Suter1, L. P. Masse2, D. S. Clark1, J. S. Ross1,  

A. J. Mackinnon1, N. B. Meezan1, C. A. Thomas1,Y. Ping1 

1Lawrence Livermore National Laboratory, P. O. Box 808, L-493,  

Livermore, CA, 94550, USA 

2CEA, DAM, DIF, F-91297 Arpajon, France 

*Corresponding author: koch1@llnl.gov 

 

X-ray backlit radiographs of dense plasma shells can be significantly altered by 

refraction of x-rays that would otherwise travel straight-ray paths, and this effect can 

be a powerful tool for diagnosing the spatial structure of the plasma being 

radiographed.  We explore the conditions under which refraction effects may be 

observed, and we use analytical and numerical approaches to quantify these effects for 

one-dimensional radial opacity and density profiles characteristic of inertial-

confinement fusion (ICF) implosions.  We also show how analytical and numerical 

approaches allow approximate radial plasma opacity and density profiles to be inferred 

from point-projection refraction-enhanced radiography data.  This imaging technique 

can provide unique data on electron density profiles in ICF plasmas that cannot be 

obtained using other techniques, and the uniform illumination provided by point-like 
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x-ray backlighters eliminates a significant source of uncertainty in inferences of 

plasma opacity profiles from area-backlit pinhole imaging data when the backlight 

spatial profile cannot be independently characterized.  The technique is particularly 

suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen 

ice, because refraction is sensitive to the electron density of the hydrogen plasma even 

when it is invisible to absorption radiography.  It may also provide an alternative 

approach to timing shock waves created by the implosion drive, that are currently 

invisible to absorption radiography. 

          OCIS codes: 340.7440, 120.5710, 110.1650, 110.2990 
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I.  Introduction 

 Backlit x-ray radiography has been an important implosion plasma diagnostic at 

the Nova Laser Facility [1] and at the Omega Laser Facility [2], and it remains an 

important diagnostic at the National Ignition Facility (NIF) [3,4].  Transmission of 

backlight x-rays along a chord through a spherically symmetric plasma can be calculated 

from the line-integrated optical depth that is the forward Abel transform of the radial 

opacity profile, and so the radial opacity profile can in principle be calculated from 

radiograph data using a backwards Abel transform of the negative logarithm of the 

transmission profile.  Generalizations to axially-symmetric plasmas are straightforward 

[5], and more sophisticated back-transforms and forward fits using model opacity profiles 

can also be applied [3]. 

 These approaches are appropriate when the plasma can be treated as a non-

refracting absorbing object, but fail when refraction becomes significant.  Refraction 

effects can become dominant when large density gradients are present in weakly 

absorbing materials [6-9], and can be important in implosion plasmas [7].  These effects 

can present data analysis and interpretation challenges, but can also provide rich 

additional information that straight-ray opacity data cannot provide. 

 From a diffraction perspective, a light wave from a backlight source experiences a 

localized phase shift in passing through a semi-transparent object.  The transmitted 

wavefront interferes with itself, and over sufficient propagation distances the phase 

perturbations generate light intensity perturbations in an image plane.  From a 

geometrical optics perspective, straight rays from the backlight source are refracted by 

transverse density gradients in the object, and this adds or subtracts light intensity locally 
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in an image plane.  When imaging effects can be understood from a geometrical optics 

perspective, the analysis generally simplifies significantly, allowing simple formulas to 

be derived to predict the light intensity pattern [7].  The two perspectives approach 

equivalence for object spatial scales L, propagation distances q, and light wavelengths λ 

that correspond to Fresnel numbers F = L2/qλ greater than unity.  This refraction-

enhanced imaging regime is of interest in fields such as medical imaging [10-13] and 

astronomy [14], and is generally of greatest interest for inertial confinement fusion (ICF) 

implosion plasma research [7].  

 Earlier work [7] began to explore refraction-enhanced radiography of implosion 

plasmas.  Here we systematically investigate the application of the technique and the 

interpretation of the data, with the goal of evaluating how it can add to our ability to 

diagnose the spatial structure of implosion plasmas.  In Section II, we explore the 

conditions that must be satisfied for refraction effects to be significant, and we show why 

point-projection radiography is generally more appropriate for producing refraction-

enhanced radiographs than area-backlit pinhole imaging or x-ray microscopy utilizing 

imaging optics.  In Section III, we explore a series of approximations that allow 

analytical equations to be derived for the refraction-enhanced radiograph profile in terms 

of the radial opacity and electron density profiles, and in Section IV we show how these 

radial profiles can in turn be approximately determined from experimental radiographs.  

In Section V, we show how a least-squares minimization process can be used to infer 

best-fit model radial opacity profiles from either absorption or refraction-enhanced 

radiography data profiles, and in Section VI apply the collected results to synthetic data 

derived from implosion hydrodynamics simulations to infer approximations to both radial 



 

   5 

opacity and electron density profiles from single refraction-enhanced radiographs.  

Finally, in Section VII we summarize the conclusions and potential future impacts of this 

work. 

 

II.  Refraction Enhancements In Implosion Radiographs 

 The basic concept of refraction-enhanced imaging of implosions was outlined 

previously [7], and is shown schematically in Figure 1.  Fig. 1(a) shows a point-

projection backlight geometry, where a ray initially travelling along a straight line from 

the center of the backlight to the detector with impact parameter b is deviated by a total 

angle δ, and strikes the detector in a different location.  This ray is distinguishable from a 

straight-ray path when the location where it strikes the detector is outside the magnified 

image of a spatial resolution element σ, the dimension of which is set by the size of the 

backlighter W and by the geometry.  When δ is small, this condition is approximately, 

q! >
p+ q

2p
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p+ q

2p

q

p+ q
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! >
W
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     (1) 

where p is the backlight/object distance, q is the object/detector distance, and f = 

pq/(p+q).  The solution for δ for a simple 1/r2 form of the index of refraction n(r) is given 

in [7], and we expect the scaling to hold for other simple forms, so we can write the 

threshold condition for refractive effects to begin to become important given a non-zero 

backlight size as, 
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where we set b ~ r, and we use the plasma form for the refractive index n(r) = 1 - 

reλ
2Ne(r)/2π, with re being the classical electron radius, λ being the backlight wavelength, 

and Ne being the effective free electron density (free or bound with binding energies 

much less than the backlight x-ray energy; complications to this simple picture are 

discussed in Section VII).  Density gradients that meet this condition do not necessarily 

produce observable refraction effects, but this approach allows for comparison to other 

kinds of imaging geometries as discussed below.  A detailed analysis of radiograph 

profiles in the presence of refraction will be presented in Section III. 

 Fig. 1(b) shows an area-backlit geometry using a pinhole as an imaging element.  

Here, the bent ray path is distinguishable from the straight path when the ray, projected 

back to the backlight, begins to fall outside the area of the backlight, the dimension of 

which is now set by the desired field of view F. 

p! >
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where d is the object/pinhole distance and f' = pd/(p+d).  By analogy with eq. (2), we can 

write the threshold condition as,  

r
dNe
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>

4F

f 're!
2

      (4) 

We can write both eqs. (2) and (4) in a single instructive form, 
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where the effective f/# for point projection is found from considering the plasma as a 

simple lens of diameter σ imaging the backlight onto the detector, and for pinhole 

imaging is found from considering the plasma as a lens of diameter F imaging the 

backlight onto the pinhole substrate.  We assume here that the backlight is appropriately 

sized to provide the desired spatial resolution (point projection) or field of view (pinhole 

imaging).  For typical values, constrained by the experimental environment of the NIF 

and other requirements, of p ≈ 10 mm, q ≈ 1300 mm, d ≈ 100 mm, σ ≈ 10 µm, and F ≈ 1 

mm, pinhole imaging would therefore be expected to be F/σ ~ 100 times less sensitive to 

refraction than point-projection imaging.  This sensitivity is generally less than was 

identified in eq. (26) of [7], but is verified by numerical raytrace calculations for area-

backlit imaging of a dense plasma shell.  This is apparently traceable to the fact that 

refraction by a dense shell is localized near the midplane of the plasma, where the angle 

between the density gradient and the ray from the backlight is very near 90 degrees.  

Essentially, for nearly every ray that is refracted away from the pinhole, there is another 

ray coming from another region of the backlight that can replace it by refracting into the 

pinhole.  These rays experience nearly identical refraction and absorption, and are 

essentially indistinguishable. 

 Finally, we point out that in Fig. 1(b), we can replace the pinhole with an ideal 

lens and the arguments leading to eq. (4) still hold.  An x-ray microscope, imaging the 

plasma onto the detector using an area backlight, would therefore be expected to show a 

similar threshold for refractive effects as a pinhole imager operating with the same field 
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of view, when the microscope optics subtend an effective solid angle large compared 

with refractive angular deviations.  A microscope using a Rowland-circle backlight 

geometry, with a small backlight or a small aperture on the Rowland circle [15], would 

have a much higher susceptibility to refraction, according to eq. (2), while an x-ray 

microscope with small backlight or small aperture off the Rowland circle would show 

susceptibility between the two cases depending on the geometry and the size of the 

backlight. 

 We see that in general, refractive effects in radiographic data will be far more 

pronounced when the effective backlight dimensions are small, as is the case for point-

projection radiography and for microscope radiography systems utilizing a small 

Rowland-circle backlight or aperture.  They will also be pronounced in coherent 

collimated beam radiography systems such as synchrotrons, where the small divergence 

angle effectively replaces the small physical backlight size.  Pinhole imagers, and un-

apertured microscopes operating with area backlighters, will be relatively insensitive to 

refractive effects, justifying the neglect of these effects in pinhole-imaging absorption 

radiography data interpretation [1-4].   

 

III.  Analytical Analysis Of Refraction And Absorption By An 

Axially-Symmetric Plasma 

 We now explore refractive enhancements in more detail, with the goal of 

obtaining simple analytical equations describing the radiograph profile of an axially-

symmetric plasma produced by a point-like backlight.  We will begin by considering the 

problem from a diffraction point of view, and we will show how this approach leads to a 
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simple equation describing the main features of a refraction-enhanced radiograph of an 

implosion plasma in terms of Abel transforms of its radial opacity and electron density 

profiles.  We will then consider improvements to this equation from a geometrical optics 

point of view, and derive a modified equation that reproduces the results of detailed 

raytracing as well as Fresnel-Kirchoff diffraction calculations for Fresnel numbers > 1, 

and reduces to the simpler equation obtained from a diffraction point of view when 

certain approximations are satisfied. 

 Diffraction by a non-absorbing phase object with transmitted (straight-ray) phase 

shift φ(x) relative to vacuum varying along the x-axis can be treated through a series of 

approximations to a solution [16] to the Fresnel-Kirchoff integral for the light 

transmission function R(x) of a uniform collimated beam as a function of x onto a 

detector a distance q behind the object,  

R(x) =1!
!q

2"

d
2#

dx
2

      (6) 

The sign can be verified by consideration of a simple optical lens.  Approximations 

required to obtain this equation include the paraxial approximation, the thin phase object 

approximation (sinφ ≈ φ, with no absorption), and the neglect of object spatial 

frequencies in φ(x) greater than approximately 1/ 10𝜆𝑞, which also derives from a 

small-angle approximation.  In general, for a finite backlight distance, we can replace q 

by f = pq/(p+q) and define x in the radiograph to be scaled back to the object through the 

magnification (p+q)/p, taking care to correct as necessary for the actual line-of-sight 

impact parameter given non-zero b/p.  This analysis also assumes that no object spatial 

frequencies are present that satisfy the Talbot self-imaging conditions [17], or that these 
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frequencies are blurred by imperfect detector spatial resolution or non-zero source size.  

Finally, clearly the absolute value of the second term in eq. (6) must be small, since 

negative transmission functions are not physical; this implies that this analysis is only 

appropriate for perturbative refractive effects and weak phase contrast. 

 For a slab of plasma of thickness z and electron density Ne(x) and for backlight 

wavelengths far from any absorption edges, the phase lags the vacuum phase by φ(x) = -

reλNe(x)z (the negative sign arises because the plasma index of refraction is less than 

unity).  Defining the electron areal density ρ(x) = Ne(x)z, eq. (6) becomes, 

R(x) =1+
re!
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f

2"

d
2#

dx
2

      (7) 

where the sign can be verified by considering a ball of plasma as a weak negative lens for 

x-rays.  For the purpose of one-dimensional imaging of an axially-symmetric plasma in 

its midplane, the electron areal density is an Abel transform of a radial electron density 

distribution Ne(r), 
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so the transmitted intensity at the detector becomes, 
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 The analysis leading to eq. (7) neglected absorption, and in the limit of Ne(x) = 0, 

R(x) is simply unity.  Neglecting refraction, when uniform absorption is present, the 

transmission is reduced to exp(-τ), where τ = αz is the optical depth and α is the local 

absorption coefficient.  This suggests that we should write the total transmission function 
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T(x) = A(x)R(x) to account for the presence of absorption in a simple way using a second 

Abel transform, 

T (x) = A(x)R(x) = e
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The first term A(x) is the absorption radiograph profile considered previously [1-4] in 

connection with pinhole-based imagers and area backlights, and the second term R(x) is 

the refractive correction that is most important for point-projection backlighting.  When 

both absorption and refraction are weak, we can approximate the exponential in eq. (10) 

as 1-t, so that the net first-order intensity variations of both refraction and absorption 

simply add [16].  Eq. (10) is therefore appropriate for conditions where both refraction 

and absorption are small; corrections providing for more accurate treatment of absorption 

could be included [18,19], but instead we will pursue a more generally accurate equation 

to replace eq. (10) for forward calculations of radiograph profiles without restricting 

absorption. 

 We can test eq. (10) using model α(r) and Ne(r) profiles, and compare the results 

to what we obtain from numerical raytracing based on an earlier code [20] that was 

modified to allow smoothly varying refractive index profiles.  The raytrace does not rely 

on paraxial or thin-object approximations, and will become increasingly exact for spatial 

frequencies less than 1/ 𝜆𝑓, corresponding to a Fresnel number of 1.  The code has been 

tested extensively and does not rely on any of the analytical results of this work, instead it 

uses essentially eq. (24) of [7] to map the ray path in one dimension through an axially-

symmetric plasma having α(r) and Ne(r) profiles specified on a radial grid and 

interpolated to arbitrary values of r using cubic splines.  The source size and source and 
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detector distances are arbitrary, and typically several million rays are traced to build up 

an image from a binned histogram in the detector plane. 

 Figure 2(a) shows model α(r) (for E = 10 keV x-ray energy, typical of energies 

required to penetrate implosion plasmas at the NIF [3,4]) and Ne(r) profiles we use as a 

first test of eq. (10).  These were created by spatially smoothing α(r) and Ne(r) curves 

from a one-dimensional implosion hydrodynamics simulation with a 5 µm full-width at 

half-maximum (FWHM) Gaussian blur function, in order to damp high spatial 

frequencies that would not be expected to be accurately captured by eq. (10) given the 

requirement that R(x) must be close to unity.  The details of this particular simulation are 

not important here; analysis of specific implosion simulation scenarios will be presented 

in Section VI.  The α(r) profile peaks at a larger radius than the Ne(r) profile because the 

shell is doped plastic plasma surrounding hydrogen-isotope plasma created from 

cryogenic ice [21], and the inner layers of plastic and hydrogen ice have low x-ray 

opacity but high electron density.  Fig. 2(b) shows radiograph profiles calculated by eq. 

(10) [22] and simulated with numerical raytracing, assuming E = 10 keV and f = 10 mm; 

the choice of f is limited primarily by NIF facility constraints, and we will use these 

values of E and f throughout the remainder of the paper.  In general the radiograph from 

eq. (10) is a good approximation to the raytrace refraction-enhanced radiograph, but 

small amplitude differences and peak offsets are evident near the highest peaks and the 

lowest dips. 

 To explore these discrepancies further, in Figure 3(a) we show a second set of 

model α(r) and Ne(r) profiles, created by spatially smoothing α(r) and Ne(r) curves from 

the same one-dimensional implosion hydrodynamics simulation, but now with a 1 µm 
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FWHM Gaussian blur function.  These curves maintain high spatial frequencies that 

exceed the range of applicability of eq. (10), but are still sufficiently low that a raytrace 

treatment is expected to be adequate for most of the radiograph.  Fig. 3(b) shows 

radiograph profiles calculated by eq. (10) and simulated with numerical raytracing.  

Refractive effects are now a large perturbation on the absorption-alone radiograph, and 

would therefore be expected to be crudely approximated by eq. (10).  Fig. 3(b) confirms 

this, with the minimum dip in the raytrace radiograph remaining (as required) above zero, 

and with structure in the vicinity of the sharpest and highest peaks being distorted and 

shifted by eq. (10) with respect to those predicted by raytracing. 

 We can introduce corrections to eq. (10) that essentially exactly reproduce the 

raytrace radiograph profiles in Figs. 2(b) and 3(b), and that essentially exactly reproduce 

numerical Fresnel-Kirchoff diffraction calculations except near the sharpest spikes, but 

these are obtained more easily from a geometrical optics perspective rather than from the 

diffraction perspective that led to eq. (6).  Building on Section III of [7] and following 

Fig. 4, a ray incident on a surface defined by s(x) in a material with index of refraction 

n=1-ε and absorption coefficient α will deflect to a final detector position x', where 

𝑥′ = 𝑥 − 𝜖(𝑞 + 𝜖𝑠/(1− 𝜖))(𝑑𝑠/𝑑𝑥) to first order in ε(ds/dx).  The path length through 

the object is 𝑠 1+ (𝜖/(1− 𝜖))!(𝑑𝑠/𝑑𝑥)!, and to first order in ε(ds/dx) this is simply s.  

If the incident intensity is I0 and we keep only first-order terms in ε(ds/dx), then the final 

transmitted intensity I/I0 at x' can be calculated using a Jacobean [7] as, 
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where the absolute value follows from the need for Δx' to be positive.  If we also assume 

ε << 1 and neglect terms involving ε2, we have,  
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 When we set ε(ds/dx) equal to zero and keep only the leading-order term in 

εqd2s/dx2, eq. (12) reduces to T(x) ~ exp(-αs)(1+εqd2s/dx2).  This is exactly analogous to 

eq. (10), which was derived from a diffraction perspective.  Here we find, from a much 

simpler geometrical optics perspective, that there are amplitude and shift corrections to 

eq. (10) involving the non-zero first derivative ε(ds/dx). 

 We can generalize eq. (12) to phase objects by replacing εs by -λf/2π, and we can 

replace q by f to include point-projection backlight geometries.  With τ(x) being the 

straight-ray optical depth, eq. (12) becomes, 

T x +
! f

2"

d#

dx

!

"
#

$

%
&=

e
'$ (x )

1+
! f

2"

d
2#

dx
2

     (13) 

Eq. (13) is quite general, and describes the point-projection intensity pattern produced by 

an absorbing and phase-shifting object in one dimension, in the geometrical optics limit 

and to first order in (λ/2π)dφ/dx.  It can also be derived from the Fresnel-Kirchoff 

integral without limitations on dφ/dx or d2φ/dx2 [23].  In x-ray radiography cases we are 

interested in, φ = -reλρ, with ρ(x) and τ(x) being the Abel transforms of Ne(r) and α(r), 

respectively.  This yields, 
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Eq. (14) effectively replaces eq. (10), while relaxing the requirements that dρ/dx be 

negligibly small and that the d2ρ/dx2 term be retained only to leading order.  It differs 

from eq. (10) in two significant ways; the right-hand side has the form 1/|1- d2ρ/dx2| 

rather than (1+ d2ρ/dx2), and it describes the radiograph intensity not at x but at x', which 

is shifted from x by an amount that scales with dρ/dx. 

 Eq. (14) can be solved numerically for arbitrary α(r) and Ne(r) radial profiles.  

Figures 5(a) and 5(b) show comparisons between the results of eq. (14) and numerical 

raytrace calculations, for the α(r) and Ne(r) profiles shown in Figs. 2(a) and 3(a), 

respectively.  Eq. (14) essentially duplicates the raytrace results in both cases, even near 

the sharpest spikes (~ 0.25 µm spatial scales) in Fig. 5(b) when one recognizes that eq. 

(14) becomes singular and forms caustics while the raytrace sums the intensities in a 

histogram with non-zero bin widths.  This occurs when (reλ
2f/2π)d2ρ/dx2 exceeds unity, 

in which case the intensity at x' becomes the sum of intensities from multiple values of x.  

In these regions of the radiograph profile, the utility of a geometrical optics perspective 

becomes questionable, because from a diffraction perspective these least-time paths will 

interfere and produce oscillatory intensities not captured by a geometrical optics 

treatment. 

 We can also check eq. (14) against a brute-force numerical Fresnel-Kirchoff 

diffraction calculation [7,16,18] with the only approximation being λφ(x)/2π << f (so that 

the fields just past the object are calculated without intermediate steps within the object), 
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using the same α(r) and Ne(r) profiles shown in Figs. 2(a) and 3(a).  These profiles are 

shown in Figures 6(a) and 6(b), respectively.  We see that eq. (14), and therefore the 

raytrace calculation, is an excellent approximation to the full diffraction calculation 

except very near the sharpest spikes in Fig. 6(b), where again we would expect a 

geometrical optics treatment to be inadequate.  This validates both improvements in eq. 

(14) over eq. (10); in general, eq. (13) is a significant improvement over eq. (6) when 

radiographing objects where τ(x) and (λ/2π)d2φ/dx2 are not necessarily small and where 

(λ/2π)dφ/dx cannot be neglected, and remains accurate throughout the geometrical optics 

regime of Fresnel numbers > 1 [23]. 

 Analytical solutions to eq. (14) for T(x), rather than T(x'), could be pursued, but 

we do not pursue them here for two reasons.  First, our goal is to obtain a relatively 

simple equation that describes the main features of point-projection radiographs of in-

flight NIF implosions, and that can be inverted to allow α(r) and Ne(r) profiles to be 

obtained from radiographic data, and inversion of eq. (14) seems intractable.  Second, in 

a real implosion plasmas we expect that the sharp gradients found in ideal one-

dimensional implosion hydrodynamics simulations will be smoothed over small solid 

angles by three-dimensional instability growth, with effective chord-integrated interface 

thicknesses of 5-10 µm [24].  In practical terms, there is little justification for analytical 

developments of eq. (14) given the mathematical complexity and given the limitations of 

NIF implosion diagnostic capabilities, and as a corollary there is likely no benefit to 

developing imaging systems capable of better than ~ 5-10 µm object resolution for side-

on in-flight implosion radiography applications.  Eq. (14) is a significant improvement 

over eq. (10) when sub-10-µm resolution data is obtained with excellent signal-to-noise, 
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particularly for objects that have µm-scale radial density features.  Improved accuracy 

could be important for diagnosis of interface instability growth very early in the 

implosion, or for diagnosis of shock propagation before the interfaces have moved 

significantly [25], in which case eq. (14), rather than eq. (10), should be used in iterative 

numerical forward fits using model α(r) and Ne(r) profiles. 

 We find that in general, a radiograph profile of an absorbing plasma characterized 

by α(r) will be modified by additional peaks and dips arising from radial variations in 

Ne(r), and that these peaks and dips may be enhanced or suppressed according to the 

scale factor fλ2.  These peaks and dips will be suppressed in a pinhole imaging system, 

compared with a point-projection system, by factors estimated from eq. (5) to be ~ 100, 

justifying the neglect of refractive effects in the analysis of implosion radiographs 

obtained with pinhole and slit imagers [1-4].  Refractive enhancements are expected to be 

significant in point-projection imaging of implosions at the NIF, and for many purposes 

these enhancements are well-described by eq. (10) that multiplies the absorption-only 

radiograph profile by a refraction term involving the second derivative of the Abel 

transform of the Ne(r) profile.  Where eq. (10) begins to fail, when density profiles with 

sharp gradients are imaged with high spatial resolution, eq. (14) essentially exactly 

reproduces a full raytrace calculation, and essentially exactly reproduces a numerical 

Fresnel-Kirchoff calculation throughout the geometrical optics regime, at the cost of 

greater complexity and an inability to invert radiograph profiles to obtain radial profiles.  

While refraction enhancements would complicate an absorption-only interpretation that is 

already well-developed [3,4], here we exploit these enhancements to provide additional 
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information on implosion plasma structure that cannot be obtained from conventional 

absorption radiographs. 

 

IV.  Inference of Electron Density Profiles From Refraction 

Radiography Data 

 In this section we show how approximate plasma electron density profiles Nefit(r) 

can be obtained from refraction-enhanced radiographs when absorption is negligible, or 

when the absorption-only radiograph profile is known independently, e.g. from 

simultaneous area-backlit pinhole image data taken along a nearby line of sight.  This 

analysis relies on a backwards inversion [26] of eq. (10).  While eq. (10) is an 

approximation to the (non-invertible) eq. (14), we will show that for most qualitative and 

quantitative purposes in ICF plasma diagnosis, the approximation is adequate. 

 To zero-order in the derivative dρ/dx, the total radiograph profile is the product of 

the absorption part A(x) and the refraction part R(x), so when A(x) is unity (negligible 

absorption) we can write eq. (10) as, 
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and, therefore, 
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Eq. (16) has the form of an Abel transform,  

f (x) = A(g(r))       (17) 

which implies that it can be inverted by an Abel back-transform,  
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Therefore, we can invert eq. (16) to obtain, 

Ne(r) =
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When R(x) is blurred in radiograph space, e.g. by non-zero backlight size or imperfect 

detector spatial resolution, then eq. (19) assumes the point-spread function has been 

deconvolved; we return to this issue in Section VI.  Abel back-transforms are well-known 

to amplify absorption radiograph data noise [3], but here the back-transform involves an 

integral over data in the numerator of the integrand, rather than a derivative.  This makes 

the process relatively insensitive to noise in the refraction radiograph data.  

 In practice, we cannot obtain radiograph data over the full [0, ∞] range of x, but 

instead we obtain data within a window [a, b]; this constraint is imposed by the 

requirements of practical point-projection radiography geometries at the NIF, particularly 

the need for high magnification imaging of a single limb of the implosion.  This 

necessitates additional constraints and approximations to obtain Ne(r).  Defining S(x) = 

R(x)-1, we write, 
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(20) 

We can simplify this by making use of the fact that the integral of S(x) over all x must be 

zero, since refraction simply shifts rays around at the detector plane.  Furthermore, in 
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practice, for a reasonably wide radiograph window that captures the refractive features of 

an imploding shell, S(x) falls rapidly to zero near the outer edge of the window, so that 

we approximate the integral of S(x) on [0, b] as zero and set S(x) = 0 for x > b.  Eq. (20) 

then becomes, 
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(21) 

where Nefit(r) is an approximation to the unknown function Ne(r).  The first term is eq. 

(19) over the finite [a, b] radiograph window, and the second term is a radially-dependent 

correction to approximately account for the finite window. 

 A potentially more significant correction to real radiograph data is the fact that in 

general, the radiograph profile has errors due to uncertainties in the baseline backlight 

brightness level and due to intensity gradients caused e.g. by vignetting of backlit 

pinholes or slits [27] or by uncertain flat-field corrections in streaked or gated framing 

camera detectors [3,4].  These uncertainties can be very problematic in area-backlit 

pinhole data because in general the area backlight spatial profile is not independently 

known and must be estimated, but for our purposes using a point-like backlight that 

produces a very uniform backlight intensity profile, we will approximate these 

corrections as simple offset and slope additions to S(x).  Replacing S(x) by S(x) + A + 

Bx, we have, 
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(22) 

We now assume that the electron density function is effectively zero with zero slope on 

the inner window boundary r = a, which we would expect to be a good approximation to 

the actual inflight density profile of an imploding shell.  This sets boundary conditions on 

the slope and offset terms, which allows them to be solved as,  
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with the matrix c defined as, 
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and f(a) and f'(a) defined as, 
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This is straightforward to solve numerically.  The resulting corrections to the Nefit(r) 

profile are generally valuable even when there are no actual slope and offset errors in the 

radiograph, because they serve as adjustable parameters to correct any residual errors left 

in eq. (21) while forcing the solution to satisfy realistic boundary conditions. 

 Figure 7 shows a comparison between the Ne(r) profile from Fig. 2(a), and the 

inferred Nefit(r) profile from eqs. (22-25).  Here we use the raytrace refraction-only 

radiograph of the Ne(r) profile in Fig. 2(a) as an input to the backwards analysis that is 

based on eq. (10), with radiograph window bounds a = 350 µm and b = 700 µm.  The 

agreement is excellent, with minor differences near the sharpest peaks of Ne(r) and in the 

large-radius tail, where eqs. (22-25) force Nefit(r) to zero at the edge of the radiograph 

window (not shown).  Exact agreement can not obtained, both because the radiograph 

window does not extend over all values of x and because eq. (10) is an approximation to 

eq. (14), but for implosion diagnosis purposes the agreement is more than adequate to 

discern the existence of two peaks in Ne(r), their separation, the peak value of Ne, and the 

overall width of the Ne(r) profile.  These features could never be observed or quantified 

with conventional absorption radiography, which at best can only recover the α(r) profile 

in Fig. 2(a) that does not contain these features. 
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 The agreement shown in Fig. 7 becomes less quantitative when absorption is not 

negligible, and when R(x) must be approximated by dividing T(x) by an A(x) profile 

determined in another way, either by simultaneous area-backlit pinhole imaging along an 

equivalent line of sight, or by fitting as will be described in Section V.  Figure 8 plots the 

refraction-only radiograph R(x) of the Ne(r) profile in Fig. 2(a) against T(x)/A(x), where 

for clarity the curves are now calculated from eq. (14) rather than generated by 

raytracing.  The peaks and dips remain in the correct positions when we approximate 

R(x) by T(x)/A(x), but their heights and depths change, and these changes would be 

expected to impact the Nefit(r) profile inferred from eqs. (22-25).  Figure 9 confirms this; 

the Nefit(r) profile inferred from eqs. (22-25) using T(x)/A(x) is qualitatively different 

from the profile inferred using R(x) in the limit of no absorption (Fig. 7), and 

qualitatively different from the actual Ne(r) profile.   

 This occurs because, in eq. (14), the intensity profile at radiograph position x' is 

determined by the derivatives of the electron density at object position x as well as the 

optical depth at position x, and in general x' ≠ x.  When absorption is not negligible, 

small variations on a steeply-sloping absorption radiograph A(x) can affect the 

denominator of T(x)/A(x), resulting in errors in the inferred R(x) profile.  However, the 

inferred Nefit(r) profile in Fig. 9 remains adequate to discern the existence of two peaks in 

Ne(r), their separation within ~ 2 µm, the peak value of Ne within ~ 50%, and the overall 

width of the Ne(r) profile (defined as the separation between the outer peaks of 

d2Ne(r)/dr2) within ~ 3 µm. 

 We have shown that a back-analysis of refraction-enhanced radiograph data 

profiles, applying eqs. (22-25) to the refractive part of the radiograph, yields a good 
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approximation to the actual Ne(r) profile within the plasma.  The approximation is very 

good when absorption is negligible and T(x)/A(x) = R(x), despite the foundation of eqs. 

(22-25) being eq. (10) rather than eq. (14), and while the correspondence degrades when 

absorption is not negligible and T(x)/A(x) must be used together with an A(x) curve 

inferred by other means, the main features of the actual Ne(r) profile are still accurately 

inferred. 

 

V.  Inference of Opacity Profiles From Absorption and 

Refraction-Enhanced Radiography Data 

 In the analysis of Section IV, we assumed that the absorption profile A(x) was 

known independently, e.g. from area-backlit pinhole imaging, so that we could infer an 

approximation to R(x) by measuring the total refraction-enhanced radiograph T(x) and 

dividing T(x) by A(x).  In this section, we will first develop a forward model fitting 

procedure that allows accurate α(r) profiles to be extracted from absorption-only 

radiograph profiles A(x) obtained using area backlighting over a narrow window, when 

the area backlight has weak spatial non-uniformities.  This procedure represents a 

significant improvement over earlier work [3] when the radiograph is obtained over a 

window of a single limb of the implosion, and when the α(r) profile is allowed to deviate 

significantly from a Gaussian functional form by having a power-law tail extending to 

large radius.  We will then generalize this process to allow A(x) and therefore α(r) to be 

inferred from T(x) without a second radiograph measurement, despite the presence of 

additional peaks and dips in the T(x) profile caused by refraction.  This is particularly 

valuable because a point-projection radiograph naturally has a very uniform backlight 
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intensity profile, eliminating potentially large analysis errors introduced by the mapping 

of area-backlight spatial non-uniformities into the radiographs when pinhole imaging is 

used. 

 When refractive effects are negligible (E is large, f is small, Ne(r) gradients are 

small, or when pinhole imaging over a wide field of view is used), eq. (10) simplifies to a 

standard absorption radiograph profile, 

T (x) = A(x) = e
!2

r! (r )dr

r
2!x2x

"

#
     (26) 

So far we have assumed that radiograph profiles are unblurred, or that any spatial 

blurring has been deconvolved prior to analysis.  When we work with raw data 

radiographs that contain blurring and have up to second-order spatial variations in the 

backlight baseline profile, we can generalize eq. (26) to, 
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where G(x) is an (assumed known) area-normalized blur function, τ(x) is the forward 

Abel transform of α(r), and D, E and F are parameters describing the backlight profile.  

We now assume an explicit functional form for α(r), which we will justify later by 

comparison to α(r) profiles derived from implosion hydrodynamics simulations, 

! fit (r) =Ce

!(r!r0 )
2

"
2

,      r # r0 +" " / 2

       =
C exp(!" / 2) " " / 2( )

"

r ! r0( )
"

,   r > r0 +" " / 2

   (28) 



 

   26 

Here αfit(r) is assumed to be Gaussian out to a cut-off radius, at which point the 

functional form changes to a decaying power law while matching function values and 

derivatives across the boundary.  The power-law tail is expected to be an important 

feature of the actual α(r) profile, particularly at late times during the implosion when the 

shell has nearly burned through and the ablated plasma contains significant mass and 

opacity [4].  Here we differ from other approaches to analyzing area-backlit pinhole 

image data [3], which model the opacity profile with a Gaussian function. 

 We can now treat eq. (27), with αfit(r) described by eq. (28), as a fit function 

Afit(x) to an actual absorption radiograph y(x), and we can adjust the values of the seven 

parameters (D, E and F describing the backlight, and C, D, r0 and γ describing the α(r) 

profile) to minimize a fit metric χ2, where, 

! 2 ! Wi

2
yi " Afit (xi;D,E,F,C,#, r0,"( )

2

i=1

N

$    (29) 

where xi, yi are the radiograph points from i = 1 to N and Wi are weight values.  χ2 is 

minimized locally when the derivatives of χ2 with respect to the parameters are all zero.  

The resulting equations are intractable, so we use Newton's method to simultaneously 

solve them iteratively using first and second derivatives of χ2.  Starting from initial 

guesses, and damping the changes between iterations by a factor δ < 1 to eliminate 

instability, the (j+1) iteration of these equations can be written as,  
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where Afit(x) is given by eq. (27), and p is any parameter of α(r) in eq. (28), i.e. C, D, r0 

or γ.  With αfit(r) given by eq. (28), the derivatives of τ(x) can be written analytically as 

Abel transforms of derivatives of α(r), and solved numerically in the same way [22].  For 

fitting to absorption radiographs, we set all Wi = 1. 

 We now explore the ability of eq. (30) to correctly infer an opacity profile 

described by eq. (28) when the input radiograph is generated from an opacity profile 

having this same analytical form.  Figure 10 shows an analytical α(r) profile from eq. 

(28) with C = 0.004 µm-1, D = 10 µm, r0 = 482 µm, and γ = 0.9, and its unblurred 

absorption radiograph A(x) together with the best-fit radiograph Afit(x) and inferred αfit(r) 

profile obtained using eq. (30) assuming no blurring (G(x) is a delta function).  For fitting 

the calculated radiograph, we use radiograph window bounds of a = 375 µm and b = 625 

µm, and we extend the Abel transform integrals to R = b + (b - r0) in τ(x) using the fit 

αfit(r) function in order to approximately account for opacity outside the radiograph 

window (the Abel integrals diverge for γ ≤ 1, and in any case a real plasma α(r) profile 

must drop to zero beyond a radius containing all the initial mass).  For practical purposes, 
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the agreement in both α(r) and A(x) is perfect; eq. (30) exactly infers the correct α(r) 

profile given its windowed radiograph as an input and then fitting in A(x) space. 

 We can repeat the calculation leading to Fig. 10, but using an input radiograph 

profile that is blurred with a 20 µm FWHM Gaussian function and then fitting it to a 

blurred profile, with G(x) in eq. (30) being a 20 µm FWHM Gaussian.  Figure 11 shows 

the results, again yielding essentially exact agreement in both α(r) and A(x).  Finally, we 

can repeat the same calculation again, using a 20 µm FWHM-blurred radiograph profile 

that is deliberately offset by a second-order backlight profile (D = 0.0875, E = -7.5x10-5, 

F = -2.5x10-7 in eq. (27)), and then randomized with Gaussian statistical noise having a 

standard deviation of 0.03 per 0.1-µm pixel, corresponding to a signal-to-noise ratio of ~ 

15 per pixel.  The results are shown in Figure 12, and again nearly exact agreement is 

obtained for both α(r) and A(x).  Different statistical realizations of noise yield slightly 

different inferred αfit(r) profiles, with variations on the order of the differences shown in 

Fig. 12. 

 Having demonstrated the ability of eq. (30) to extract a best-fit αfit(r) profile 

according to eq. (28), despite the presence of (known) blurring, non-uniform backlight 

profiles described by second-order polynomials, and statistical noise, we return to the 

α(r) profile derived from implosion hydrodynamics simulations and shown in Fig. 2(a).  

The absorption radiograph profile A(x) shown in Fig. 2(b) is reproduced with an 

expanded scale in Figure 12, and we also show the best-fit radiograph profile Afit(x) 

derived from eq. (30) and the corresponding best-fit αfit(r) profile.  We see that the model 

αfit(r) profile of eq. (28) (in this case with C = 0.0041 µm-1, D = 8.4 µm, r0 = 481.5 µm, 
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and γ = 0.89) is well-matched to the actual α(r) profile derived from hydrodynamics 

simulations, justifying the use of eq. (28).  We will show in Section VI that eq. (28) is 

well-matched to actual α(r) profiles derived from hydrodynamics simulations over a wide 

range of times during the implosion. 

 We now show that we can extract a good approximation to α(r) using the model 

profile of eq. (28) and the fit procedure of eq. (30), but applied to refraction-enhanced 

radiographs rather than to absorption-only radiographs.  This is effective because, away 

from the peaks and dips caused by refraction through steep density gradients, the 

refraction-enhanced radiograph rapidly converges to the absorption-only radiograph.  

Essentially, where the derivative and second derivative of ρ(x) can be neglected in eq. 

(14), the result is T(x) = A(x).  We can therefore fit the refraction-enhanced radiograph in 

a way that heavily weights the points in regions where negligible refraction is expected, 

and de-weights the points in regions of significant refractive peaks, dips and shifts.  We 

do this by setting Wi << 1 in eq. (30) within a region of the refraction-enhanced 

radiograph defined by inner and outer windows, outside of which we assume T(x) = A(x) 

and Wi = 1. 

 The raytrace refraction-enhanced radiograph profile shown in Fig. 2(b) is 

reproduced with an expanded scale in Figure 14 together with the actual α(r) profile from 

Fig. 2(a).  Choosing a de-weighting window of x = 435-520 µm, within which we set Wi 

= 0.05, we find that eq. (30) provides an excellent fit to the absorption part of the 

radiograph, and that the best-fit αfit(r) profile (in this case with C = 0.0038 µm-1, D = 9.4 

µm, r0 = 481.6 µm, and γ = 0.82) is essentially as good as the best-fit profile of Fig. 10 

that was inferred from the absorption-only radiograph.  This result is typical, as we will 



 

   30 

show in Section VI.  The choice of Wi = 0.05 within the de-weighting window, as well as 

the choice of the de-weighting window boundaries, is somewhat arbitrary, but generally 

follows the prescription that the window boundaries should be away from refractive 

peaks and dips, and that the de-weighting factor should be small but not zero in order to 

avoid best-fit radiograph solutions that do not go through the radiograph region 

containing the peaks and dips. 

 In this section we have developed a numerical analysis procedure that is capable 

of extracting best-fit Afit(x) and αfit(r) profiles from either absorption-only or refraction-

enhanced radiographs, according to the model profile of eq. (28), despite the presence of 

known radiograph blurring, second-order non-uniformities in the backlight profile, and 

numerical noise.  In the next section, we will apply these results together with the back-

analysis procedure developed in Section IV to infer αfit(r) and Nefit(r) profiles from 

refraction-enhanced radiographs obtained over a range of times during a NIF implosion. 

 

VI.  Application to Synthetic NIF Implosion Radiograph Data 

 In the previous sections, we have developed the capability to infer approximate 

αfit(r) (from eq. (30)) and Nefit(r) (from eqs. (22-25)) profiles from refraction-enhanced 

radiographs of shell plasmas.  Neither process is sensitive to data noise (αfit(r) is inferred 

from a forward fit using a model function, Nefit(r) is inferred from an Abel back-

transform of a double integral that damps noise rather than amplifies it), or to second-

order or first-order variations in backlight intensity, respectively.  We have also shown 

that α(r) can be inferred correctly even from data with known spatial blurring, by fitting 

in blurred radiograph space and extracting an unblurred α(r) function.  We now explore 
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how well these processes work with synthetic radiograph data derived from a specific 

realistic implosion hydrodynamics simulation, and we quantify the accuracy expected for 

measurement of several important implosion performance metrics. 

 For these tests, we use the results of a one-dimensional Hydra [28] simulation of a 

NIF cryogenic implosion [21].  In this simulation, a Si-doped plastic shell surrounding 

cryogenic deuterium-tritium ice was imploded with 1.45 MJ of laser energy in a shaped 

drive tuned to ignite the main fuel at the time of peak compression and central pressure, 

approximately 22 ns after the start of the laser drive.  This capsule differs from the 

capsule used in the simulations analyzed in Sections III-V, which was doped with Ge at 

different levels and driven differently; we use the Si-doped design here primarily because 

it shows reduced opacity at 10 keV, making the analysis process described in Section IV 

more accurate.   

 We are interested here in times between 19 and 21 ns, when the capsule is still 

imploding and when the final fuel configuration is being determined by shock timing, 

symmetry, ablation pressure, and other physics.  At early times, radiograph data analysis 

becomes challenging because gradients are steep and eq. (10) is no longer a good 

approximation to eq. (14), while at late times motion blurring within realistic gate time 

windows degrades the visibility of the refraction features of T(x).  We will discuss the 

former issue in Section VII.  

 We take four simulated snapshot α(r) and Ne(r) profiles during the implosion, at 

19.3, 19.9, 20.4 and 20.8 ns, smooth them with a 5 µm FWHM Gaussian function to 

approximate chord integration along the diagnostic line of sight, use eq. (14) to generate 

simulated refraction-enhanced radiographs T(x) from α(r) and Ne(r) extending out to radii 
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> 2 mm, blur the resulting radiographs with an additional Gaussian function (6.6, 8.8, 

10.4 and 11.9 µm FWHM Gaussian, respectively) to approximate the effects of a realistic 

5 µm backlight source size [9] and motional blurring within a realistic 40 ps gate time 

window, and then clip the resulting radiographs with a 250 µm-wide window centered 

approximately on the center of the imploding shell.  We then apply the methodology of 

Section V to infer the absorption part of the radiograph Afit(x) and the unblurred αfit(r) 

profile, and then apply the methodology of Section IV to the quotient T(x)/Afit(x) to 

obtain Nefit(r)  We note that blurring of the refractive part of T(x) remains, and so the 

Nefit(r) profile inferred from the backwards analysis of Section IV will show the effects of 

this blurring.  An alternative approach would be to deconvolve the known blurring from 

T(x), infer the unblurred Afit(x) from the forward fit procedure, and then infer the 

unblurred Nefit(r).  When spatial blurring is larger, this process could be preferable despite 

the additional errors and uncertainties it would introduce, but for present purposes we 

will show that it is unnecessary. 

 Figures 15(a)-15(d) show the synthetic radiographs T(x) and A(x) (the latter is not 

used in this analysis) obtained from the above processing of α(r) and Ne(r), together with 

the inferred curves Afit(x) obtained from the forward process of Section V, for the four 

snapshot times.  In each case, we set Wi = 0.05 in eq. (30) within windows estimated to 

be broad enough to exclude refraction effects (700-820 µm, 590-730 µm, 480-620 µm, 

and 370-500 µm, respectively).   Figs. 15(e)-15(h) show comparisons between the actual 

α(r) and Ne(r) profiles, and the inferred profiles αfit(r) and Nefit(r) obtained from the 

forward and backward processing of Section IV and V.  We see that in general the 

agreement is very good throughout the 19.3 - 20.8 ns time history, including at later times 
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when α(r) develops a significant non-Gaussian tail due to the opacity of the ablated shell 

material. 

 We can quantify the accuracy obtained by selecting a number of metrics defining 

the α(r) and Ne(r) profiles.  The α(r) and Ne(r) profile widths (defined here to be the 

separation between the outer peaks of d2Ne(r)/dr2) are measures of inflight compression 

of the shell and shell-plus-ice masses, respectively, with the latter width being larger and 

not measureable at these times by absorption radiography due to the low x-ray opacity of 

the ice.  The radii at peak α or Ne are important for implosion velocity measurements.  

We also examine the peak value of Ne and the integral of α(r)r2dr within the windows 

shown in Figs. 15(e)-15(h); the latter quantity would be expected to be proportional to the 

remaining mass of the shell, which is an important implosion performance metric [3].   

 The results are tabulated in Table I along with the errors in the inferred quantities 

vs. the actual quantities.  We see that the widths and radii are correctly inferred within 

approximately 10 µm and 5 µm, respectively, comparable to the spatial resolution of the 

measurements, and that both peak Ne and α(r)𝑟!dr are correctly inferred within 5 - 

10%.  The inferred Ne(r) profile widths are generally wider than the actual widths, largely 

due to uncorrected blurring but partly due to the gradient term in eq. (14) that is neglected 

in the back-analysis procedure of Section IV.  However, empirically reducing the 

measured widths by an amount equal to the effective object spatial resolution brings the 

widths into agreement well within the ~ 7 - 12 µm resolution element of the data.  We 

note that the excellent agreement in peak Ne may be fortuitous given the results shown in 

Section IV using unblurred radiograph profiles (Fig. 9).  The main effects of uncorrected 

blurring of the refraction-enhanced radiographs appears to be a reduction of the inferred 
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peak Ne and a broadening of the inferred Ne(r) profile.  The former effect is actually 

helpful, and the second effect can be approximately corrected empirically. 

 These results are typical of other low-opacity capsule simulations we have 

examined, including pathological cases where drive temporal variations or catastrophic 

instability-driven mix cause dramatic changes in the shape of the observed refraction-

enhanced image data and in the inferred profile widths.  For illustrative purposes, we 

show one such comparison in Figure 16.  Fig. 16(a) shows a time sequence of simulated 

refraction-enhanced radiographs from the nominal simulation analyzed earlier in this 

section, and Fig. 16(b) shows a sequence of simulated refraction-enhanced radiographs 

taken at the same times from a pathological simulation of the same capsule driven by a 

temporally fluctuating drive.  Marked differences are evident in the radiograph data, 

particularly early in time, that would be obvious even to the eye, and the radiographs can 

be analyzed as described here to infer markedly different radial profiles, particularly 

showing different widths and structure in the Ne(r) curve that are not be observable in 

absorption radiograph data. 

 

VII.  Summary 

 We have shown that point-projection x-ray radiographs of implosion plasmas 

relevant to ICF experiments at the NIF will show significant refraction features at 

relevant x-ray energies and backlight distances (10 keV, 10 mm), resulting in refraction-

enhanced radiograph profiles T(x) that differ qualitatively and quantitatively from 

absorption radiograph profiles A(x) obtained with pinhole imagers and area backlights.  

Peaks and dips in T(x) can be understood in terms of derivatives of the total electron areal 
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density ρ(x) through the limb of the implosion, enabling inference of the total electron 

radial density profile Ne(r) even through regions of the plasma that do not significantly 

absorb the backlight x-rays, including through plasma formed from initially cryogenic 

hydrogen ice.  We have used geometrical optics to develop an equation, eq. (14), that is 

essentially an exact solution to the Fresnel-Kirchoff integral in the geometrical optics 

limit [23] and describes T(x) in terms of both ρ(x) and the optical depth profile τ(x), and 

we have explored limits where these terms are separable in eq. (10), allowing separate 

analysis to determine both Ne(r) and the absorption radial profile α(r). 

 We have used these analytical results to develop analytical and numerical data 

analysis procedures to extract approximate α(r) and Ne(r) from refraction-enhanced 

radiographs of implosion plasmas.  α(r) is determined using a model profile that allows 

the possibility of a significant tail extending to large radius, as is expected based on 

implosion hydrodynamics simulations, and we extract a best-fit model αfit(r) by fitting in 

radiograph space including spatial blurring, second-order backlight non-uniformities, and 

data noise.  Using the measured T(x) and the best-fit Afit(x), we can then determine an 

approximate Nefit(r) through a backwards inversion process based on eq. (10).  We have 

shown that this data analysis procedure returns good approximations to α(r) and Ne(r), 

and we have quantified the accuracy expected for realistic implosion plasma profiles, 

using a realistic backlight size (5 µm) and temporal resolution (40 ps).   

 Measurement of Ne(r) (width, peak and peak radius, radial structure) would be a 

new capability in implosion plasma diagnosis, and measurement of α(r) from the same 

plasma using the same data allows comparison between the two profiles that would 

isolate the thickness of the hydrogen plasma surrounded by the opaque shell plasma in 
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cryogenic layered implosions.  Finally, the uniform nature of illumination by a point-like 

backlight eliminates significant source of error in the interpretation of pinhole-imaging 

absorption radiographs in current experiments, likely allowing for more accurate 

measurements of important parameters like remaining mass.  We expect to implement 

this implosion diagnostic capability in the near future, and the experimental results will 

be reported elsewhere. 

In situations where eq. (10) is a poor approximation to eq. (14) (large f, λ or 

dρ/dx, particularly when τ is large), then the inversion process described in Section IV 

breaks down, the approximation T(x) = A(x)R(x) implicit in Section V no longer holds, 

and the only recourse is to use a simultaneous forward-model fit procedure to both α(r) 

and Ne(r) using eq. (14), possibly starting with the results of Sections IV and V as initial 

trial functions.  When this becomes necessary, it may be advantageous to define α(r) and 

Ne(r) on a radial grid, rather than assume they follow analytical model functions, and 

vary the abscissa and ordinate points utilizing genetic-algorithm search procedures 

similar to those developed for use in x-ray spectroscopy data analysis [29] and currently 

being explored for use in NIF absorption radiography data analysis.  This capability 

would be particularly valuable for analysis of refraction-enhanced radiography data very 

early in the implosion, when density gradients are steep and when shocks are transiting 

the shell and ice layers.  This could allow an independent measure of shock timing that 

currently can only be diagnosed in surrogate targets [25], requiring reliance on 

simulations to verify the surrogacy with actual implosion targets. 

When refraction dominates absorption but is still very weak (e.g. at much higher 

x-ray backlight energy), other techniques could be utilized to infer ρ(x) and therefore 
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Ne(r).  Phase-contrast imaging using diffraction gratings has been proposed [17] for laser-

produced plasma diagnosis, and the utility of this approach for diagnosing implosion 

plasmas would be clarified by refraction-enhanced radiography data of the type described 

here.  Other plausible approaches capable of diagnosing small refractive effects include 

crystal analyzers [30], Moiré deflectometry [31], and Hartmann sensors [32].  These will 

all be limited ultimately by available x-ray backlight brightness at higher x-ray energies, 

so inclusion of realistic capabilities in the experiment planning process is critical in 

evaluating the viability of phase-sensitive techniques at multi-tens-of-keV x-ray energies.  

Additionally, short-pulse laser-produced backlights could become necessary due to their 

relatively high conversion efficiency at high x-ray energies [33]; such backlights have 

already been utilized for high-energy implosion radiography experiments at the Omega 

Laser Facility [34], and are planned for the NIF. 

Throughout we have used the standard ionized-plasma form of the index of 

refraction, n = 1 - reλ
2Ne/2π.  However, when n is calculated by more sophisticated 

means we can use it directly, in which case eq. (14) becomes, 
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Since (n-1) changes sign depending on whether n is greater than unity or less than unity, 

this implies that across a spectral region near a resonance where the plasma index of 

refraction becomes greater than unity [35-37], the refraction-enhanced radiograph pattern 

will change significantly, with peaks and dips inverting and with shifts in eq. (31) 

changing sign.  This is analogous to plasma interferometry measurements, where fringes 

bend in unexpected directions because of the contributions of bound electrons to the 

index of refraction in certain x-ray energy regimes [36].  Similar anomalous dispersion 

effects have been observed with high-energy gamma-rays for different physical reasons 

[38].  Relatively simple refraction-enhanced backlighting of suitable plasmas in suitable 

x-ray energy regimes could probe refractive index variations using conventional 

backlights, possibly coupled to a spectrometer to disperse the backlight x-rays in a 

direction perpendicular to a one-dimensional space axis.  Eq. (31) generalizes readily to 

non-spherically-symmetric plasmas through a modification of eq. (33), and the data 

analysis process described here can be readily modified for other kinds of symmetry. 
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Figure Captions 

Figure 1:  Geometry of backlit imaging with a point-like backlight (a) and with a pinhole and 

an area backlight (b).  In both cases, the visibility of refraction effects that tend to steer 

the curved ray depend on the size of the backlight. 

Figure 2:  Ne(r) and α(r) profiles derived from implosion hydrodynamics simulation output, 

smoothed with a Gaussian blur with a 5 µm FWHM (a), and simulated absorption and 

total (refraction and absorption) radiograph profiles from a 10 keV point-backlight at a 

distance of 10 mm from the center of the implosion plasma, calculated both by raytracing 

and by eq. (10) (b).  No spatial blurring of the radiographs is applied, and the noise in the 

raytrace radiograph is statistical noise due to a finite number of randomly-directed rays. 

Figure 3:  Ne(r) and α(r) profiles derived from implosion hydrodynamics simulation output, 

smoothed with a Gaussian blur with a 1 µm FWHM (a), and simulated absorption and 

total (refraction and absorption) radiograph profiles from a 10 keV point-backlight at a 

distance of 10 mm from the center of the implosion plasma, calculated both by raytracing 

and by eq. (10) (b).  No spatial blurring of the radiographs is applied, and the noise in the 

raytrace radiograph is statistical noise due to a finite number of randomly-directed rays. 

Figure 4:  Sketch showing the geometry of a ray incident from above that is refracted by an 

absorbing and phase-shifting object with an incident surface profile described by s(x). 

Figure 5:  Simulated total (refraction and absorption) radiograph profiles from a 10 keV 

point-backlight at a distance of 10 mm from the center of the implosion plasma, using the 

Ne(r) and α(r) profiles from Fig. 2(a) (a) and using the Ne(r) and α(r) profiles from Fig. 

3(a) (b), calculated both by raytracing and by eq. (14).  No spatial blurring of the 
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radiographs is applied, and the noise in the raytrace radiograph is statistical noise due to a 

finite number of randomly-directed rays. 

Figure 6:  Simulated total (refraction and absorption) radiograph profiles from a 10 keV 

point-backlight at a distance of 10 mm from the center of the implosion plasma, using the 

Ne(r) and α(r) profiles from Fig. 2(a) (a) and using the Ne(r) and α(r) profiles from Fig. 

3(a) (b), calculated both by numerical Fresnel-Kirchoff diffraction integrals and by eq. 

(14).  No spatial blurring of the radiographs is applied. 

Figure 7:  Ne(r) profile from Fig. 2(a), compared with a Nefit(r) profile inferred from the 

refraction part of the raytrace radiograph in Fig. 2(b) using eqs. (22-25), with a data 

window from 350-700 µm. 

Figure 8:  Refraction R(x) and total/absorption T(x)/A(x) radiograph profiles from the Ne(r) 

and α(r) profiles from Fig. 2(a), calculated by eq. (14).  No spatial blurring of the 

radiographs is applied. 

Figure 9:  Ne(r) profile from Fig. 2(a), compared with a Nefit(r) profile inferred from the 

T(x)/A(x) curve of Fig. 7 using eqs. (22-25), with a data window from 350-700 µm. 

Figure 10:  Analytical α(r) profile using eq. (28) with C = 0.004 µm-1, D = 10 µm, r0 = 482 

µm, and γ = 0.9, and calculated unblurred radiograph profile A(x) (solid lines), together 

with a best fit to the radiograph profile Afit(x) using eq. (30) and the corresponding fit 

αfit(r) profile (dashed lines). 

Figure 11:  Analytical α(r) profile using eq. (28) with C = 0.004 µm-1, D = 10 µm, r0 = 482 

µm, and γ = 0.9, and calculated radiograph profile A(x) blurred with a 20 µm FWHM-

Gaussian function (solid lines), together with a best fit to the radiograph profile Afit(x) 

using eq. (30) and the corresponding fit αfit(r) profile (dashed lines). 
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Figure 12:  Analytical α(r) profile using eq. (28) with C = 0.004 µm-1, D = 10 µm, r0 = 482 

µm, and γ = 0.9, and calculated radiograph profile A(x) blurred with a 20 µm FWHM-

Gaussian function, offset with a non-uniform backlight profile (D = 0.0875, E = -7.5x10-

5, F = -2.5x10-7 in eq. (27)), and randomly noised with a standard deviation of 0.03 per 

0.1-µm pixel (solid lines), together with a best fit to the radiograph profile Afit(x) using 

eq. (30) and the corresponding fit αfit(r) profile (dashed lines). 

Figure 13: α(r) profile from Fig. 2(a) and calculated absorption radiograph A(x) (solid lines), 

together with a best fit to the radiograph profile using eq. (30) and the corresponding fit 

α(r) profile (dashed lines). Optimum fit parameters in eq. (28) are C = 0.0041 µm-1, D = 

8.4 µm, r0 = 481.5 µm, and γ = 0.89. 

Figure 14: α(r) profile and calculated refraction-enhanced radiograph from Fig. 2(a) (solid 

lines), together with a best fit to the radiograph profile Afit(x) using eq. (30) and the 

corresponding fit αfit(r) profile (dashed lines).  Here, the radiograph points within the 

bounds x = 435 and 520 µm were de-weighted by a factor of 0.05 compared with the 

radiograph points outside these bounds.  Optimum fit parameters in eq. (28) are C = 

0.0038 µm-1, D = 9.4 µm, r0 = 481.6 µm, and γ = 0.82. 

Figure 15:  Synthetic absorption A(x) and refraction-enhanced T(x) radiographs, processed as 

described in Section VI, along with forward-fit Afit(x) profiles derived from T(x), at four 

different times in the simulation; 19.3 ns (a), 19.9 ns (b), 20.4 ns (c), and 20.8 ns (d).  

Simulated α(r) and Ne(r) curves at the same times are shown in (e), (f), (g) and (h) 

respectively, along with the inferred curves αfit(r) and Nefit(r) derived from the T(x) 

radiographs. 
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Figure 16:  Synthetic gray-scale refraction-enhanced radiographs at times 19.3, 19.6, 19.9, 

20.2, 20.4, 20.6 and 20.8 ns, for a nominal simulation (a) and for a pathological 

simulation (b) of the same capsule driven by a temporally fluctuating drive that launches 

additional shocks into the implosion. 
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Figure 6(a) 
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Figure 11 
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Figure 15(a) 

 
Figure 15(b) 

 

0.6

0.8

1

1.2

650 700 750 800 850 900

A(x)
T(x)
A

fit
(x)

R
a

d
io

g
ra

p
h

X (!m)

(a)

0.6

0.8

1

1.2

550 600 650 700 750 800

A(x)
T(x)
A

fit
(x)

R
a

d
io

g
ra

p
h

X (!m)

(b)



 

   60 

 
Figure 15(c) 
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Figure 15(e) 
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Figure 15(g) 
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